

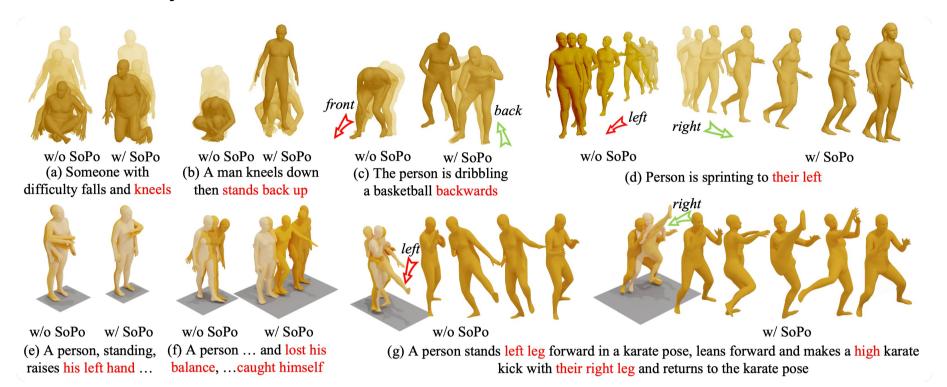
SoPo: Text-to-Motion Generation Using Semi-Online Preference Optimization

Xiaofeng Tan^{1,2}, Hongsong Wang^{1,2*}, Xin Geng^{1,2}, Pan Zhou³

¹ Southeast University, ² Key Laboratory of New Generation Artificial Intelligence Technology, ³ Singapore Management University

Introduction

Existing text-to-motion methods struggle to semantically consistent motions.



Key Observation: We observe that tasks of motion understanding and discrimination are generally less complex and demonstrate superior performance compared to motion generation.

Question: How effectively can discriminative models improve motion generation quality without any additional inference cost?

Contributions: We propose SoPo, a semi-online preference optimization method, combining the strengths of online and offline direct preference optimization to overcome their individual shortcomings, delivering enhanced motion generation quality and preference alignment.

Motivation: Rethink Off-/Online DPO

Offline DPO: overfitting due to limited unpreferred motions.

Theorem 1. Given a preference motion dataset \mathcal{D} , a reference model π_{ref} , and ground-truth preference distribution $p_{\rm gt}$, the gradient of $\nabla_{\theta} \mathcal{L}_{\rm off}$ can be written as:

$$\nabla_{\theta} \mathcal{L}_{\text{off}}(\theta) = \mathbb{E}_{c \sim \mathcal{D}, x^{1:K}} \nabla_{\theta} D_{KL}(p_{\text{gt}} || p_{\theta}). \tag{4}$$

Here $p_{\theta}(x^{1:K}|c) = \prod_{k=1}^{K} p_{\theta}(x^k|c)$ represents the likelihood that policy model generates motions $x^{1:K}$ matching their rankings, where $p_{\theta}(x^k|c) = \frac{(\exp h_{\theta}(x^k,c))^{\beta}}{\sum_{i=k}^K (\exp h_{\theta}(x^i,c))^{\beta}}$.

Online DPO: biased sampling, resulting in even high-preference samples being incorrectly categorized as low-preference motions.

Theorem 2. Given a reward model r and a reference model π_{ref} , for the online DPO loss \mathcal{L}_{on} , its gradient is: $abla_{ heta} \mathcal{L}_{ ext{on}}(heta) = \mathbb{E}_{c \sim \mathcal{D}, x^{1:K}}
abla_{ heta} \ p_{ar{\pi}_{ heta}}(x^{1:K}|c) D_{KL}(p_r||p_{ heta}),$

where $p_{\bar{\pi}_{\theta}}(x^{1:K}|c) = \prod_{k=1}^{K} p_{\bar{\pi}_{\theta}}(x^k|c)$ with $p_{\bar{\pi}_{\theta}}(x^k|c)$ being the generative probability of policy model to generate x^k conditioned on c, and $p_{\theta}(x^k) = \frac{(\exp h_{\theta}(x_k,c))^{\beta}}{\sum_{j=k}^K (\exp h_{\theta}(x_j,c))^{\beta})^{\beta}}$ denotes the likehood that policy model generates motion x_k with the k-th largest probability.

Contact

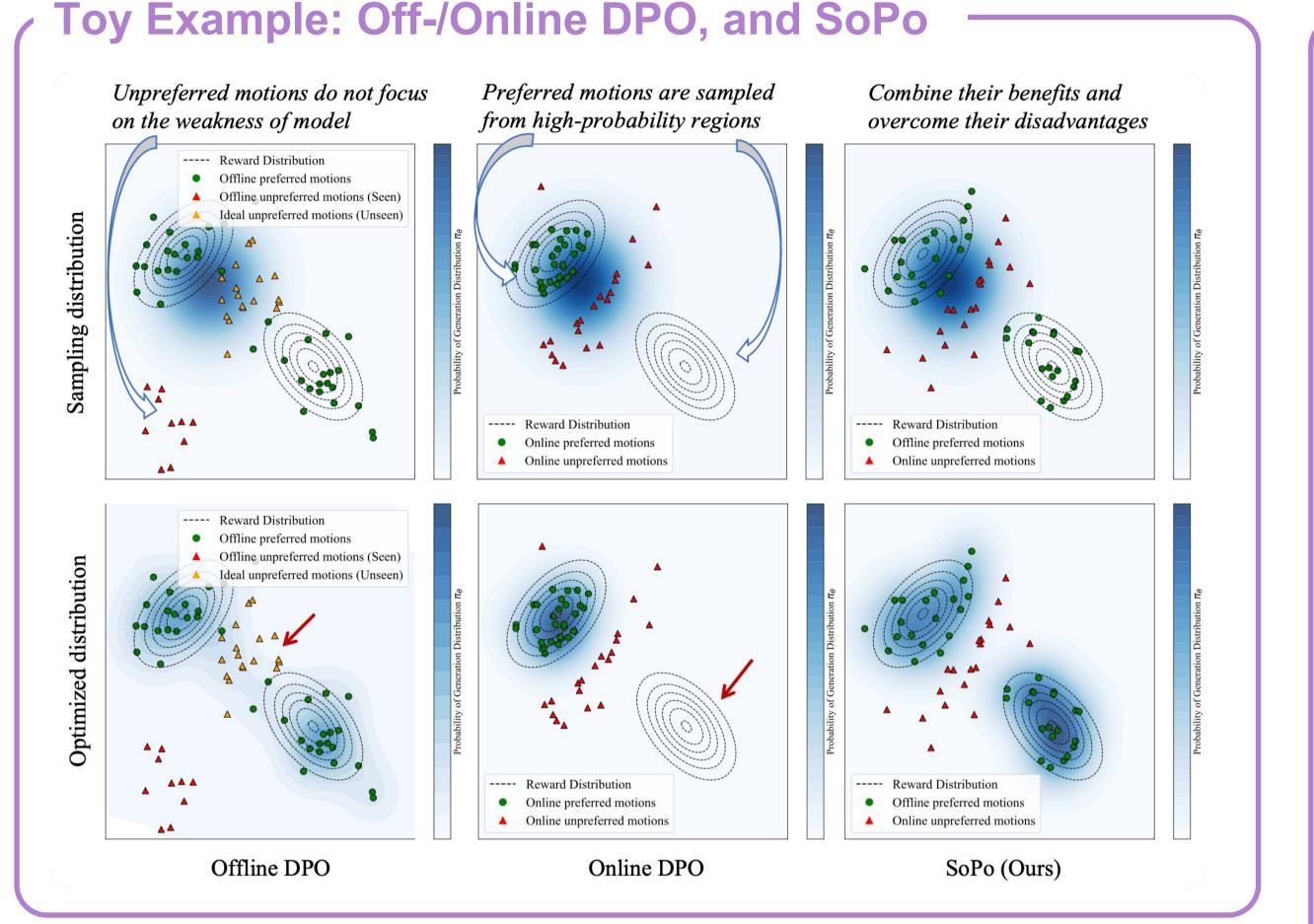
Email: txf0620@gmail.com

WeChat: txf_06_20

X: XiaofengTan85815

Project Page

Code



Semi-Online Preference Optimization

Insight for Unpreferred Motion Sampling

Case 1: The group $\{x_{\bar{\pi}_{\theta}}^k\}_{k=1}^K$ contains a low-preference unpreferred motion $x_{\bar{\pi}_{\theta}}^l$. Then we select these unpreferred motions iteratively which ensure diversity due to randomness of online generations and address the diversity lacking issue in offline DPO.

Case 2: The group contains no low-preference unpreferred motion $x_{\bar{\pi}_0}^l$, meaning all sampled motions are of high preference and should not be treated as unpreferred. This suggests the model performs well under condition c, so training should focus on high-quality preferred motions from offline data to further enhance generation quality.

1. Distribution Separation

$$p_{\bar{\pi}_{\theta}}(x_{\bar{\pi}_{\theta}}^{1:K}|c) = \underbrace{p_{\bar{\pi}_{\theta}}(x_{\bar{\pi}_{\theta}}^{1:K}|c)p_{\tau}(r(x_{\bar{\pi}_{\theta}}^{l},c) \geq \tau)}_{\text{relatively high-preference unpreferred motions } \bar{\pi}_{\theta}^{hu} + \underbrace{p_{\bar{\pi}_{\theta}}(x_{\bar{\pi}_{\theta}}^{1:K}|c)p_{\tau}(r(x_{\bar{\pi}_{\theta}}^{l},c) < \tau)}_{\text{valuable unpreferred motions } \bar{\pi}_{\theta}^{vu}}_{\text{valuable unpreferred motions } \bar{\pi}_{\theta}^{vu}}$$

$$\mathcal{L}_{\text{vu}} = -\mathbb{E}_{(x^w,c)\sim\mathcal{D}} Z_{vu}(c) \mathbb{E}_{x_{\bar{\pi}_{\theta}}^{1:K} \sim \bar{\pi}_{\theta}^{vu*}(\cdot|c)} \log \sigma \left(\beta \mathcal{H}_{\theta}(x^w, x_{\bar{\pi}_{\theta}}^l, c)\right),$$

$$\mathcal{L}_{\text{hu}} = -\mathbb{E}_{(x^w,c)\sim\mathcal{D}} Z_{hu}(c) \mathbb{E}_{x_{\bar{\pi}_{\theta}}^{1:K} \sim \bar{\pi}_{\theta}^{hu*}(\cdot|c)} \log \sigma \left(\beta \mathcal{H}_{\theta}(x^w, x_{\bar{\pi}_{\theta}}^l, c)\right),$$

2. Training loss amendment

Accordingly, we rewrite the loss $\mathcal{L}_{hu}(\theta)$ into $\mathcal{L}_{USoPo-hu}(\theta)$ for filtering them:

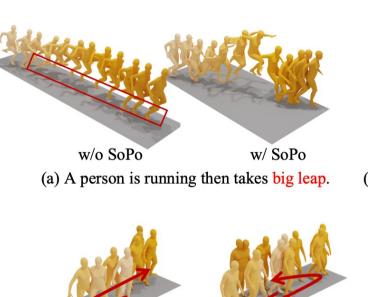
$$\mathcal{L}_{\mathrm{USoPo-hu}}(heta) = -\mathbb{E}_{(x^w,c)\sim\mathcal{D}} Z_{hu}(c) \log \sigma \Big(eta h_{ heta}(x^w,c) \Big), \;\; \mathcal{L}_{\mathrm{USoPo}}(heta) = \mathcal{L}_{\mathrm{USoPo-hu}}(heta) + \mathcal{L}_{\mathrm{vu}}(heta)$$

3. SoPo for Diffusion

$$\mathcal{L}_{\text{SoPo}}^{\text{diff}}(\theta) = -\mathbb{E}_{t \sim \mathcal{U}(0,T),(x^{w},c) \sim \mathcal{D},x^{1:K}_{\bar{\pi}_{\theta}} \sim \bar{\pi}_{\theta}(\cdot|c)} \begin{cases} \log \sigma \Big(-T\omega_{t} \big(\beta_{w}(x_{w})\mathcal{L}(\theta, \text{ref}, x_{t}^{w}) - \beta \mathcal{L}(\theta, \text{ref}, x_{t}^{l}) \big) \Big), & \text{if } r(x^{l},c) < \tau, \\ \log \sigma \Big(-T\omega_{t} \beta_{w}(x_{w})\mathcal{L}(\theta, \text{ref}, x_{t}^{w}) \Big), & \text{otherwise.} \end{cases}$$
(17)

Experiments

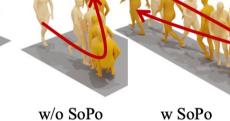
Text-to-Motion Qualitative Results

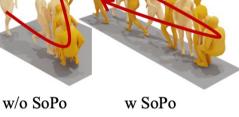


(d) The person slides to their right 3 times

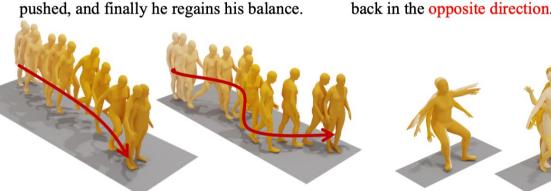
(e) A man throws an object with his right hand while lifting his

(f) A man is run





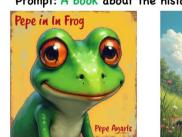
(h) A person walks forward, briefly (i) A person kneels down onto all then stands back up.



(j) A person walks forward in a zig zag pattern, stepping over something along the way.

(k) A person raises both their arms over their head while bending their elbows, they then bend their knees in a squat, and then come out of it.

Text-to-Image Qualitative Results



Text-to-Motion Quantitative Results

Methods	Time*	R-Precision ↑			MM Dist ↓	Diversity \rightarrow	FID↓
· · · · · · · · · · · · · · · · · · ·		Top 1	Top 2	Top 3	11111 2150 4	Diversity /	112 4
Real	-	$0.511^{\pm0.003}$	$0.703^{\pm0.003}$	$0.797^{\pm.002}$	$2.974^{\pm0.008}$	$9.503^{\pm0.065}$	$0.002^{\ \pm0.000}$
MLD [1]	+0 X	$0.453^{\pm0.003}$	$0.679^{\pm0.003}$	$0.755^{\pm0.003}$	$3.292^{\pm0.010}$	$9.793^{\pm0.072}$	$0.459^{\pm0.011}$
+ MoDiPO-T [9]	+121K X	$0.455^{\pm0.002}$	$0.682^{\pm0.003}$	$0.758^{\pm0.002}_{\pm0.40\%}$	$3.267^{\pm .010}_{0000000000000000000000000000000000$	$9.747^{\pm0.073}_{\pm0.046}$	$0.303^{\pm0.031}_{\pm33.9\%}$
+ MoDiPO-G [9]	+121K X	$0.452^{\pm0.003}$	$0.678^{\pm0.003}$	$0.753^{\pm0.003}_{-0.26\%}$	$3.267^{\pm .010}_{0000000000000000000000000000000000$	$9.702^{\pm .075}_{-0.091}$	$0.303^{\pm 0.031}_{-38.8\%}$ $0.281^{\pm 0.031}_{-38.8\%}$
+ MoDiPO-O [9]	-	$0.406^{\pm0.003}$	$0.609^{\pm0.003}$	$0.677^{\pm0.003}_{-10.3\%}$	$3.701^{\pm0.013}_{-12.4\%}$	$9.241^{\pm .079}_{-0.018}$	$0.281^{\pm0.031}_{-38.89}$ $0.276^{\pm0.007}_{-39.99}$
+ SoPo (Ours)	+20 X	$0.463^{\pm0.003}_{+2.21\%}$	$0.682^{\pm0.003}_{+2.23\%}$	$0.763^{\pm0.003}_{+1.06\%}$	$3.185^{\pm0.012}_{+3.25\%}$ [†]	$9.525^{\pm0.065}_{00000000000000000000000000000000000$	$0.276^{\pm 0.007}_{00000000000000000000000000000000000$
MDM [13]	+0 X	$0.418^{\pm0.005}$	$0.604^{\pm0.005}$	$0.703^{\pm0.005}$	$3.658^{\pm0.025}$	$9.546^{\pm0.066}$	$0.501^{\pm0.037}$
+ MoDiPO-T [9]	+121K X	$0.421^{\pm0.006}$	$0.635^{\pm0.005}$	$0.706^{\pm0.004}_{+0.42\%}$	$3.634^{\pm .026}_{\pm 0.66\%}$	$9.531^{\pm0.073}_{-0.015}$ $9.495^{\pm0.071}_{-0.035}$	$0.451^{\pm0.031}_{-9.98\%}$ $0.486^{\pm0.031}_{-2.99\%}$
+ MoDiPO-G [9]	+121K X	$0.420^{\pm0.006}$	$0.632^{\pm0.005}$	$0.704^{\pm0.001}_{00000000000000000000000000000000000$	$3.641^{\pm0.025}_{00000000000000000000000000000000000$	$9.495^{\pm0.071}_{00000000000000000000000000000000000$	$0.486^{\pm0.031}_{\pm2.99\%}$
MDM (fast) [13]	+0 X	$0.455^{\pm0.006}$	$0.645^{\pm0.007}$	$\begin{array}{c} 0.706^{\pm0.004}_{+0.42\%} \\ 0.704^{\pm0.001}_{+0.14\%} \\ 0.749^{\pm0.004} \end{array}$	$3.634^{\pm .026}_{00000000000000000000000000000000000$	$9.948^{\pm0.084}$	$0.534^{\pm0.052}$
+ SoPo (Ours)	+60 X	$0.479^{\pm0.006}_{+5.27\%}^{\dagger}$	$0.674^{\ \pm .005}_{\ +4.50\%}$	$0.770^{\pm0.006}_{+2.80\%}^{\dagger}$	$3.208^{\pm0.025}_{00000000000000000000000000000000000$	$9.906^{\pm .083}_{+0.042}$	$0.480^{\pm0.046}_{-10.19}$

Methods	Year	R-Precision ↑				MM Dist↓	Diversity \rightarrow	Multimodal ↑	FID ↓
		Top 1	Top 2	Top 3	Avg.				<u>, </u>
Real	-	$0.511^{\pm0.003}$	$0.703^{\pm0.003}$	$0.797^{\pm0.002}$	0.670	$2.794^{\pm0.008}$	$9.503^{\pm0.065}$	=	$0.002^{\pm0.000}$
ΓΕΜΟS [40]	2022	$0.424^{\pm0.002}$	$0.612^{\pm0.002}$	$0.722^{\pm0.002}$	0.586	$3.703^{\pm0.008}$	$8.973^{\pm0.071}$	$0.368^{\pm0.018}$	$3.734^{\pm0.028}$
Γ2M [3]	2022	$0.457^{\pm0.002}$	$0.639^{\pm0.003}$	$0.740^{\pm0.003}$	0.612	$3.340^{\pm0.008}$	$9.188^{\pm0.002}$	$2.090^{\pm0.083}$	$1.067^{\pm0.002}$
MDM [13]	2022	$0.418^{\ \pm 0.005}$	$0.604^{\pm0.005}$	$0.703^{\pm0.005}$	0.575	$3.658^{\pm0.025}$	$9.546^{\pm0.066}$	$2.799^{\pm0.072}$	$0.501^{\pm0.037}$
MLD [1]	2023	$0.481^{\pm0.003}$	$0.673^{\pm0.003}$	$0.772^{\pm0.002}$	0.642	$3.196^{\pm0.016}$	$9.724^{\pm0.082}$	$2.413^{\pm0.079}$	$0.473^{\pm0.013}$
MotionGPT [42]	2023	$0.492^{\pm0.003}$	$0.681^{\pm0.003}$	$0.778^{\pm0.002}$	0.650	$3.096^{\pm0.008}$	$9.528^{\pm0.071}$	$2.008^{\pm0.084}$	$0.232^{\pm0.008}$
MotionDiffuse [14]	2024	$0.491^{\pm0.004}$	$0.681^{\pm0.002}$	$0.782^{\pm0.001}$	0.651	$3.113^{\pm0.018}$	$9.410^{\pm0.049}$	$1.553^{\pm0.042}$	$0.630^{\pm0.011}$
OMG [43]	2024	-	-	$0.784^{\pm0.002}$	-	-	$9.657^{\pm0.085}$	-	$0.381^{\pm0.008}$
Wang et. al. [6]	2024	$0.433^{\pm0.007}$	$0.629^{\pm0.007}$	$0.733^{\pm0.006}$	0.598	$3.430^{\pm0.061}$	$9.825^{\pm0.159}$	2.835	$0.352^{\pm0.109}$
MoDiPO-T [9]	2024	$0.455^{\pm0.003}$	$0.682^{\pm0.003}$	$0.758^{\pm0.002}$	-	$3.267^{\pm0.010}$	$9.747^{\pm0.073}$	$2.663^{\pm0.111}$	$0.303^{\pm0.031}$
PriorMDM [12]	2024	$0.481^{\pm0.002}$	-	-	-	$5.610^{\pm0.023}$	$9.620^{\pm0.074}$	_	$0.600^{\pm0.053}$
LMM-T ¹ [41]	2024	$0.496^{\ \pm0.002}$	$0.685 {}^{\pm 0.002}$	$0.785^{\pm0.002}$	0.655	$3.087^{\pm0.012}$	$9.176^{\pm0.074}$	$1.465^{\pm0.048}$	$0.415^{\pm0.002}$
CrossDiff ³ [11]	2024	-	_	$0.730^{\pm0.003}$	_	$3.358^{\pm0.011}$	$9.577^{\pm0.082}$	_	$0.281^{\pm0.016}$
Motion Mamba [7]	2024	$0.502^{\pm0.003}$	$0.693^{\pm0.002}$	$0.792^{\pm0.002}$	0.662	$3.060^{\pm0.009}$	$9.871^{\pm0.084}$	$2.294^{\pm0.058}$	$0.281^{\pm0.011}$
MLD* [1, 2]	2024	$0.504^{\pm0.002}$	$0.698^{\pm0.003}$	$0.796^{\pm0.002}$	0.666	$3.052^{\pm0.009}$	$9.634^{\pm0.064}$	$2.267^{\pm0.082}$	$0.450^{\pm0.011}$
MLD* [2] _{+ SoPo}	2025	0.528 _{+4.76%}	$0.722_{+3.44\%}$	0.827 _{+3.89%}	0.692 _{+3.90%}	2.939 _{+3.70%}	$9.584_{+38.1\%}$	$2.301^{\pm0.076}$	0.174 _{+61.3%}