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Toy Example: Off-/Online DPO, and SoPo

Combine their benefits and
overcome their disadvantages

Experiments

Issue: Existing text-to-motion methods struggle
semantically consistent motions.

to generate

Preferred motions are sampled Text-to-Motion Qualitative Results

from high-probability regions
o -

Unpreferred motions do not focus
on the weakness of model
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(k) A person raises both their arms over their head while bending their
elbows, they then bend their knees in a squat, and then come out of it.

(j) A person walks forward in a zig zag pattern,
stepping over something along the way.

preference alignment.

Semi-Online Preference Optimization

Insight for Unpreferred Motion Sampling Text-to-Image Qualitative Results

Prompt: A still of Doraemon from “"Shaun the Sheep” by Aardman Animation.

Motivation: Rethink Off-/Online DPO

Offline DPO: overfitting due to limited unpreferred motions.

. k K < . l
Case 1: The group {z3, };_, contains a low-preference unpreferred motion z;,. Then we

select these unpreferred motions iteratively which ensure diversity due to randomness of online
generations and address the diversity lacking issue in offline DPO.
l

Case 2: The group contains no low-preference unpreferred motion x; , meaning all sampled
motions are of high preference and should not be treated as unpreferred. This suggests the model - _ i
performs well under condition c, so training should focus on high-quality preferred motions from Flux
offline data to further enhance generation quality.

Prompt: A book about the history of Pepe the Frog.
Pepe in [n Frog 1 8\

Theorem 1. Given a preference motion dataset D, a reference model 7..¢, and ground-truth prefer-
ence distribution pgt, the gradient of Vg Log can be written as:

VoLofi(0) =K. p z1:x VoDrL(Pgt||Ps)- 4)

Here py(z¥|c) = Hszl po (z¥|c) represents the likelihood that policy model generates motions

SoPo (Ours) Flux

Text-to-Motion Quantitative Results
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