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Abstract

Text-to-motion generation is essential for advancing the creative industry but1

often presents challenges in producing consistent, realistic motions. To address2

this, we focus on fine-tuning text-to-motion models to consistently favor high-3

quality, human-preferred motions—a critical yet largely unexplored problem. In4

this work, we theoretically investigate the DPO under both online and offline5

settings, and reveal their respective limitation: overfitting in offline DPO, and6

biased sampling in online DPO. Building on our theoretical insights, we introduce7

Semi-online Preference Optimization (SoPo), a DPO-based method for training8

text-to-motion models using “semi-online” data pair, consisting of unpreferred9

motion from online distribution and preferred motion in offline datasets. This10

method leverages both online and offline DPO, allowing each to compensate for11

the other’s limitations. Extensive experiments demonstrate that SoPo outperforms12

other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of13

MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model,14

respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the15

SoTA model in terms of R-precision and MM Dist. Visualization results also show16

the efficacy of our SoPo in preference alignment. Code will be released publicly.17

1 Introduction18

Text-to-motion generation aims to synthesize realistic 3D human motions based on textual descrip-19

tions, unlocking numerous applications in gaming, filmmaking, virtual and augmented reality, and20

robotics [1–4]. Recent advances in generative models [5–7], particularly diffusion models [1, 2, 8–21

14], have significantly improved text-to-video generation. However, text-to-motion models often22

encounter challenges in generating consistent and realistic motions due to several key factors.23

Firstly, models are often trained on diverse text-motion pairs where descriptions vary widely in style,24

detail, and purpose. This variance can cause inconsistencies, producing motions that do not always25

meet realism or accuracy standards [15, 16]. Secondly, text-to-motion models are probabilistic,26

allowing diverse outputs for each description. While this promotes variety, it also increases the27

chances of generating undesirable variations [4]. Lastly, the complexity of coordinating multiple28

flexible human joints results in unpredictable outcomes, increasing the difficulty of achieving smooth29

and realistic motion [16]. Together, these factors limit the quality and reliability of current methods30

of text-to-motion generation.31

In this work, we focus on refining text-to-motion models to consistently generate high-quality and32

human-preferred motions, a largely unexplored but essential area given its wide applicability. To our33

knowledge, MoDiPO [9] is the only work directly addressing this. MoDiPO applies a preference34

alignment method, DPO [17], originally developed for language and text-to-image models, to the35

text-to-motion domain. This approach fine-tunes models on datasets where each description pairs36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



(a) Someone with 
difficulty falls and kneels

w/ SoPow/o SoPo
(b) A man kneels down 

then stands back up

w/ SoPow/o SoPo
(c) The person is dribbling 

a basketball backwards
(d) Person is sprinting to their left

w/ SoPow/o SoPo w/ SoPow/o SoPo

right

left

w/ SoPow/o SoPo
(g) A person stands left leg forward in a karate pose, leans forward and makes a high karate 

kick with their right leg and returns to the karate pose
(f) A person … and lost his 
balance, …caught himself 

(e) A person, standing, 
raises his left hand …

w/o SoPo w/ SoPow/o SoPo w/ SoPo

front
left right

back

Figure 1: Visual results on HumanML3D dataset. We integrate our SoPo into MDM [13] and MLD
[1], respectively. Our SoPo improves the alignment between text and motion preferences.

with both preferred and unpreferred motions, guiding the model toward more desirable outputs.37

Despite MoDiPO’s promising results, challenges remain, as undesired motions continue to arise,38

as shown in Fig. 1. Unfortunately, this issue is still underexplored, with limited efforts directed at39

advancing preference alignment approaches to mitigate it effectively.40

Contributions. Building upon MoDiPO, this work addresses the above problem, and derives some41

new results and alternatives for text-to-motion generation alignment. Particularly, we theoretically42

investigate the limitations of online and offline DPO, and then propose a Semi-Online Preference43

Optimization (SoPo) to solve the alignment issues in online and offline DPO for text-to-motion44

generation. Our contributions are highlighted below.45

Our first contribution is the explicit revelation of the limitations of both online and offline DPO.46

Online DPO is constrained by biased sampling, resulting in high-preference scores that limit the47

preference gap between preferred and unpreferred motions. Meanwhile, offline DPO suffers from48

overfitting due to limited labeled preference data, especially for unpreferred motions, leading to poor49

generalization. This leads to inconsistent performance in aligning preferences for existing methods.50

Inspired by our theory, we propose a novel and effective SoPo method to address these limitations.51

SoPo trains models on “semi-online” data pairs that incorporate high-quality preferred motions from52

offline datasets alongside diverse unpreferred motions generated dynamically. This blend leverages53

the offline dataset’s human-labeled quality to counter online DPO’s preference gap issues, while the54

dynamically generated unpreferred motions mitigate offline DPO’s overfitting.55

Finally, extensive experimental results like Fig. 1 show that our SoPo significantly outperforms the56

SoTA baselines. For example, on the HumanML3D dataset, integrating our SoPo into MLD brings57

0.222 in Diversity and 3.25% in MM Dist improvement. By comparison, combining MLD with58

MoDiPO only bring 0.091 and −0.01% respectively. These results underscore SoPo’s effectiveness59

in improving human-preference alignment in text-to-motion generation.60

2 Related Works61

Text-to-Motion Generation. Text-to-motion generation [10, 18–24] is a key research area with broad62

applications in computer vision. Recently, diffusion-based models have shown remarkable progress63

by enhancing both the quality and diversity of generated motions with stable training [2, 11–13].64

MotionDiffuse [14] is a pioneering text-driven diffusion model that enables fine-grained body control65

and flexible, arbitrary-length motion synthesis. Tevet et al. [13] propose a transformer-based diffusion66

model using geometric losses for better training and performance. Chen et al. [1] improve efficiency67

by combining latent space and conditional diffusion. Kong et al. [8] enhance diversity with a discrete68

representation and adaptive noise schedule. Dai et al. [2] present a real-time controllable model69

using latent consistency distillation for efficient and high-quality generation. Despite these advances,70

generating realistic motions that align closely with text remains challenging.71
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Direct Preference Optimization. Preference alignment aims to model preference distributions over72

different outputs under the same conditions. It has shown great success in large language models73

(LLMs) [17, 25], text-to-3D [26], and image generation [27–31], offering a promising solution to74

the aforementioned issue. Existing methods are broadly categorized into offline [27, 32] and online75

DPO [28–31]. Offline DPO trains on fixed datasets with preference labels from humans [27] or76

AI feedback [9]. In contrast, online DPO generates data online using a policy [31] or a reference77

model [29], and forms preference pairs via human [28] or AI feedback [32]. While effective in text-78

to-image generation, DPO methods for text-to-motion—e.g., MoDiPO [9]—remain underexplored79

and face challenges such as overfitting and insufficient preference gaps.80

3 Motivation: Rethink Offline & Online DPO81

Preliminaries. Here we analyze DPO in MoDiPO to explain its inferior alignment performance for82

text-to-motion generation. To this end, we first briefly introduce DPO [17]. Let D be a preference83

dataset which comprises numerous triples, each containing a text condition c and a motion pair84

xw ≻ xl where xw and xl respectively denote the preferred motion and unpreferred one. With this85

dataset, Reinforcement Learning from Human Feedback (RLHF) [33] first trains a reward model86

r(x, c) to access the quality of x under the condition c. Then RLHF maximizes cumulative rewards87

while maintaining a KL constraint between the policy model πθ and a reference model πref:88

max
πθ

E
c∼D,x∼πθ(·|c)

[r(x, c)− βDKL (πθ(x|c) ∥πref(x|c))] . (1)

Here one often uses the frozen pretrained model as the reference model πref and current trainable89

text-to-motion model as the policy model πθ.90

Building upon RLHF, DPO [17] analyzes the close solution of problem in Eq. (1) to simplify its loss:91

LDPO(θ)=E(xw,xl,c)∼D

[
− log σ

(
βHθ(x

w, xl, c)
)]

, (2)

where Hθ(x
w, xl, c) = hθ(x

w, c)− hθ(x
l, c), hθ(x, c) = log πθ(x|c)

πref(x|c) , and σ is the logistic function.92

When there are multiple preferred motions (responses) under a condition c, i.e., x1≻x2≻ · · · ≻93

xK (K ≥ 2), by using Plackett-Luce model [34], DPO can be extended as:94

Loff(θ) = −E(x1:K ,c)∼D

[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]
. (3)

When K = 2, Loff degenerates to LDPO. Since MoDiPO uses multiple preferred motions for95

alignment, we will focus on analyze the general formulation in Eq. (3).96

3.1 Offline DPO97

Analysis. In Eq. (3), its training data are sampled from an offline dataset D. So DPO in Eq. (3) is98

also called “offline DPO". Here we analyze its preference optimization with its proof in App. B.199

Theorem 1. Given a preference motion dataset D, a reference model πref , and ground-truth prefer-100

ence distribution pgt, the gradient of ∇θLoff can be written as:101

∇θLoff(θ) =E(x1:K ,c∼D)∇θDKL(pgt||pθ). (4)

Here pθ(x1:K |c)=
∏K

k=1pθ(x
k|c) with represents the likelihood that policy model generates motions102

x1:Kmatching their rankings, where pθ(x
k|c)= (exphθ(x

k,c))β∑K
j=k(exphθ(xj ,c))β

.103

Theorem 1 shows that the gradient of offline DPO aligns with the gradient of the forward KL104

divergence, DKL(pgt||pθ). This suggests that the policy model pθ (i.e., the trainable text-to-motion105

model) is optimized to match its distribution with the ground-truth motion preference distribution pgt.106

Discussion. However, since training data is drawn from a fixed dataset D, the model risks overfitting,107

particularly on unpreferred samples. Due to limited annotations, text-to-motion datasets typically108

contain only one preferred motion group x1:K
c per condition c, making pgt(·|c) resemble a one-point109

distribution, i.e., pgt(x1:K
c |c) = 1. In this case, minimizing DKL(pgt∥pθ) reduces to maximizing110

likelihood: minDKL(pgt∥pθ) ⇔ min− log pθ(x
1:K
c |c). As a result, offline DPO progressively111

increases pθ(x1:K
c |c), widening the preference gap between preferred and unpreferred motions. As112

illustrated in Fig. 2, the model primarily learns from the fixed motion group x1:K
c for each c, causing113
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Figure 2: Overfitting in offline DPO:
green/red points are preferred/unpre-
ferred motions; blue shows bias from
fixed unpreferred data, red indicates
uncovered unpreferred regions.

the internal gap within x1:K
c to expand. This overfitting114

effect, also noted in [35], suggests that with limited unpre-115

ferred data, the model learns to avoid only specific patterns116

(e.g., red regions in Fig. 2) while ignoring many common un-117

preferred motions. Despite this limitation, the offline dataset118

is manually labeled and provides valuable preference infor-119

mation, where the gap between preferred and unpreferred120

motions is large, benefiting learning preferred motions.121

3.2 Online DPO122

Analysis. In each online DPO training iteration, the current123

policy model πθ generates K samples for a given text c. A124

pretrained reward model r ranks them by preference as x1
π̄θ ≻ xπ̄θ2 ≻ · · · ≻ xπ̄θK , where xπ̄θi125

is sampled from πθ without gradient backpropagation. Using the Plackett-Luce model [34], the126

probability of xk
π̄θ

being ranked k-th is given by:127

pr(x
k
π̄θ
|c) =

exp r(xk
π̄θ
, c)∑K

i=k exp r(x
i
π̄θ
, c)

. (5)

Then we can analyze online DPO below.128

Theorem 2. Given a reward model r and a reference model πref , for the online DPO loss Lon, its gradient is:129

∇θLon(θ) = Ec∼D∇θ pπ̄θ (x
1:K |c)DKL(pr||pθ), (6)

where pπ̄θ (x
1:K |c) =

∏K
k=1 pπ̄θ (x

k|c) with pπ̄θ (x
k|c) being the generative probability of policy model to130

generate xk conditioned on c, and pθ(x
k) = (exphθ(xk,c))

β∑K
j=k

(exphθ(xj ,c))β)β
denotes the likehood that policy model131

generates motion xk with the k-th largest probability.132

See the proof in App. B.2. Theorem 2 indicates that online DPO minimizes the forward KL divergence133

DKL(pr||pθ). Thus, online DPO trains the policy model πθ, i.e., the text-to-motion model, to align134

its text-to-motion distribution with the online preference distribution pr(x|c).135

Discussion. We discuss the training bias and limitations of online DPO. Specifically, motions with136

high generative probability pπ̄θ
(xπ̄θ

|c) are frequently synthesized and thus dominate the training of πθ.137

In contrast, motions with low generative probability—despite potentially high human preference—are138

rarely generated and scarcely contribute to training. Notably, when pπ̄θ
(xπ̄θ

|c) → 0 but the reward139

r(xπ̄θ
, c) → 1, the gradient still vanishes: limpπθ

(xπ̄θ
|c)→0,r(xπ̄θ

,c)→1 ∇θLon = 0 (see derivation140

in App. B.2). This highlights a key limitation: online DPO tends to ignore valuable but infrequent141

preferred motions, focusing instead on commonly generated ones regardless of their actual preference.142

Additionally, online DPO aligns the generative probability pπ̄θ
(xπ̄θ

|c) with the preference distribution143

pr(xπ̄θ
|c), leading to a positive correlation. Thus, motions with higher generative probabilities often144

exhibit higher preferences. However, since preference rankings are determined by a reward model,145

roughly half of these high-preference motions—those with lower rankings k despite high scores146

r(xk
π̄θ
, c)—are still treated as unpreferred. As a result, many unpreferred training motions retain147

considerable preference, reducing the preference gap compared to manually labeled offline datasets.148

On the other hand, online DPO dynamically generates diverse motions, particularly unpreferred149

motions, in each iteration. This dynamic process enriches preference information and mitigates the150

overfitting observed in offline DPO, enabling the model to avoid the undesired patterns.151

3.3 DPO-based methods for Text-to-Motion152

Analysis. DPO in MoDiPO [9] uses an offline dataset D that is indeed generated by a pre-trained153

model πp, denoted as:154 {
xw
πp

= argmaxx1:K
πp

∈π̄p
exp r(xk

πp
, c),

xl
πp

= argminx1:K
πp

∈π̄p
exp r(xk

πp
, c),

D = {(xw
πp

, xl
πp

, c)|c ∈ offline textural sets}. (7)

For discussion, we formulate its sampled distribution as:155

pMo
gt (xw, xl|c) = I((xw, xl, c) ∈ D), (8)
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Figure 3: Comparison of offline, online DPO, and our SoPo on synthetic data. Offline DPO suffers
from mining unpreferred motions with high probability, and online DPO is limited by biased sampling.
Our SoPo utilizes the dynamic unpreferred motions and preferred motions from unbiased offline
dataset, overcoming their advantage. Here, the blue region is the distribution of generative model.

where the indication function I(E) = 1 if event E happens; otherwise, I(E) = 0.156

From Eq. (7), we observe that, like online DPO, MoDiPO samples preference motions from the157

distribution pπp
(x|c) induced by the pre-trained model πp. This leads to two main issues like online158

DPO. 1) Samples with low generative probability pπp(x|c) but high preferences r(x, c) are rarely159

generated by πp and thus seldom contribute to training, even though they are highly desirable motions.160

2) As discussed in Sec. 3.2, the motions xπp
generated by πp typically exhibit both high generative161

probability and preference scores, which causes half of the preferred samples to be selected as162

unpreferred, skewing the model’s learning process. See the detailed discussion in Sec. 3.2.163

Additionally, from Eq. (8), we see that for a given condition c, MoDiPO trains on fixed preference164

data, similar to offline DPO. Consequently, MoDiPO is limited to avoiding only the unpreferred165

motions valued by the pre-trained model πp, rather than those relevant to the policy model πθ. Thus,166

it inherits the limitations of both online and offline DPO, constraining the alignment performance.167

4 Semi-Online Preference Optimization168

4.1 Overview of SoPo169

We introduce our Semi-Online Preference Optimization (SoPo) to address the limitations in both170

online and offline DPO for text-to-motion generation. Its core idea is to train the text-to-motion171

model on semi-online data pairs, where high-preference motions are from offline datasets, while172

low-preference and high-diversity unpreferred motions are generated online.173

As discussed in Sec. 3, offline DPO provides high-preference motions with a clear preference gap174

from unpreferred ones but tends to overfit due to reliance on fixed, single-source unpreferred motions.175

In contrast, online DPO benefits from diverse, dynamically generated data but often lacks a sufficient176

preference gap and overlooks low-probability preferred motions. To leverage the strengths of both,177

SoPo samples diverse unpreferred motions xl
π̄θ

from online generation and high-preference motions178
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xw
D from offline datasets, ensuring a broad gap between them. Thus, SoPo mitigates the overfitting of179

offline DPO and the insufficient preference gaps in online DPO. Accordingly, we arrive at our SoPo:180

LDSoPo(θ) =− E(xw,c)∼DExl∼π̄θ(x|c) log σ
(
βHθ(x

w, xl, c)
)
, (9)

where Hθ(x
w, xl, c) is defined below Eq. (2), xw is preferred motion from the offline dataset, and xl181

is unpreferred motion sampled from online DPO. To demonstrate the advantages of SoPo, we conduct182

experiments on synthetic data, as shown in Fig. 3 (Detailed experimental settings in App. C.1).183

However, direct online generation of unpreferred motions from the policy model presents challenges,184

given the positive correlation between the generative distribution pπ̄θ
and preference distribution pr.185

Additionally, a large gap between preferred and unpreferred motions remains essential for effective186

SoPo. In Sec. 4.2 and 4.3, we receptively elaborate on SoPo’s designs to address these challenges.187

4.2 Online Generation for Unpreferred Motions188

Here we introduce our generation pipeline for diverse unpreferred motions. Specifically, given a189

condition c, we first generate K motions {xk
π̄θ
}Kk=1 from the policy model πθ, and select the one with190

the lowest preference value:191

xl
π̄θ

= argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c). (10)

However, xl
π̄θ

could still exhibit a relatively high preference r(xl
π̄θ
, c) due to the positive correlation192

between the generative probability pπ̄θ
and preference distribution pr (see Sec. 3.2 or 3.3). To193

identify genuinely unpreferred motions, we apply a threshold τ to the set {xk
π̄θ
}Kk=1 and check if any194

preference score is below it. This leads to two training strategies based on the result.195

Case 1: The group {xk
π̄θ
}Kk=1 contains a low-preference unpreferred motion xl

π̄θ
. Then we196

select these unpreferred motions iteratively which ensure diversity due to randomness of online197

generations and address the diversity lacking issue in offline DPO.198

Case 2: The group contains no low-preference unpreferred motion xl
π̄θ

, meaning all sampled199

motions are of high preference and should not be treated as unpreferred. This suggests the model200

performs well under condition c, so training should focus on high-quality preferred motions from201

offline data to further enhance generation quality.202

To operationalize this, we apply: 1) distribution separation and 2) training loss amendment.203

(1) Distribution separation: With a threshold τ , we separate the distribution pπ̄θ
(x1:K

π̄θ
|c) into two204

sub-distributions:205

pπ̄θ (x
1:K
π̄θ

|c) = pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl
π̄θ
, c)≥τ)︸ ︷︷ ︸

relatively high-preference unpreferred motions π̄hu
θ

+ pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl
π̄θ
, c)<τ)︸ ︷︷ ︸

valuable unpreferred motions π̄vu
θ

,
(11)

where pπ̄θ
(x1:K |c) =

∏K
k=1 pπ̄θ

(xk|c), pπ̄θ
(xk|c) is the generative probability of policy model πθ206

to generate xk conditioned on c, pτ (r(xl
π̄θ
, c)≥τ) is the probability of the event xl

π̄θ
≥ τ , and207

pτ (r(x
l
π̄θ
, c)≤τ) has similar meaning.208

Eq. (11) indicates that the online generative distribution π̄θ(x
1:K
π̄θ

|c) can be separated according to209

whether the sampled motion x1:K
π̄θ

group contains valuable unpreferred motions. Accordingly, our210

objective loss in Eq. (9) can also be divided into two ones: LDSoPo(θ) = Lvu(θ) + Lhu(θ), where211

Lvu(θ) targets valuable unpreferred motions and Lhu(θ) targets high-preference unpreferred motions:212

Lvu=− E(xw,c)∼DZvu(c)Ex1:K
π̄θ

∼π̄vu∗
θ

(·|c)log σ
(
βHθ(x

w, xl
π̄θ
, c)

)
,

Lhu=− E(xw,c)∼DZhu(c)Ex1:K
π̄θ

∼π̄hu∗
θ

(·|c)log σ
(
βHθ(x

w, xl
π̄θ
, c)

)
,

(12)

where Hθ(x
w, xl

π̄θ
, c) is defined in Eq. (2), pπ̄vu∗

θ
(·) =

pvu
π̄θ

(·)
Zvu(c)

and phu∗π̄θ
(·) =

phu
π̄θ

(·)
Zhu(c)

respectively213

denote the distributions of valuable unpreferred and high-preference unpreferred motions. Here214

Zvu(c) =
∫
pπ̄vu

θ
(x)dx and Zhu(c) =

∫
pπ̄hu

θ
(x)dx are the partition functions, and are unnecessary215

to be computed in our implementation (Nore discussion are provided in App. B.3).216

(2) Training loss amendment: As discussed above, unpreferred motions in case 2 have relatively217

high-preference (score ≥ r), and thus should not be classified into unpreferred motions for training.218
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Accordingly, we rewrite the loss Lhu(θ) into LUSoPo−hu(θ) for filtering them:219

LUSoPo−hu(θ) = −E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)
, LUSoPo(θ) = LUSoPo−hu(θ) + Lvu(θ). (13)

See more discussion on LUSoPo/LDSoPo in App. B.4.220

4.3 Offline Sampling for Preferred Motions221

As discussed, online DPO suffers from a limited preference gap between preferred and unpreferred222

motions. While high-quality motions from offline datasets can help mitigate this issue, they may not223

always differ significantly from generated motions—especially when the model is well-aligned with224

the dataset. Thus, motions with larger preference gaps (Sec. 4.2) are crucial and should be prioritized.225

To utilize the generated unpreferred motion set Dc conditioned on c from Sec. 4.2, we calculate its226

proximity with the unpreferred motions in Dc using cosine similarity:227

S(xw) = min
xk
π̄θ

∼Dc

cos(xw, xk
π̄θ
).

Then we reweight the loss using βw(xw) = β(C − S(xw)) with a constant C ≥ 1:228

LSoPo(θ) =− E(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)
[
log σ

(
βw(x

w)hθ(x
w, c)− βhθ(x

l, c)
)]

− E(xw,c)∼DZhu(c) log σ
(
βw(x

w)hθ(x
w, c)

)
.

(14)

As similar samples have similar preferences, this reweighting strategy guides the model to priori-229

tize preferred motions with a significant preference gap from unpreferred ones. Accordingly, this230

reweighting strategy relieves and even addresses the small preference gap issue in online DPO.231

4.4 SoPo for Diffusion-Based Text-to-Motion232

Recently, diffusion text-to-motion models have achieved remarkable success [2, 6, 11, 12], enabling233

the generation of diverse and realistic motion sequences. Inspired by [27], we derive the objective234

function of SoPo for diffusion-based text-to-image generation (See proof in App. B.5):235

Ldiff
SoPo = Ldiff

SoPo−vu + Ldiff
SoPo−hu, (15)

236

Ldiff
SoPo−vu = −E

t∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)
[
log σ

(
− Tωt

(
βw(xw)(L(θ, ref, x

w
t ) − βL(θ, ref, x

l
t)
))]

Ldiff
SoPo−hu=−Et∼U(0,T ),(xw,c)∼DZhu(c)

[
log σ

(
− Tωtβw(xw)L(θ, ref, x

w
t )

)]
,

(16)

where L(θ, ref, xt) = L(θ, xt) − L(ref, xt), and L(θ/ref, xt) = ∥ϵθ/ref(xt, t) − ϵ∥22 denotes the237

loss of the policy or reference model. Equivalently, we optimize the following form238

Ldiff
SoPo(θ) = −E

t∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄θ(·|c)

log σ
(
− Tωt

(
βw(xw)L(θ, ref, xw

t ) − βL(θ, ref, xl
t)
))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

(17)

where xl = argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c). Proof and more details are provided in App. A.239

5 Experiment240

Datasets & Evaluation Metrics. We evaluate SoPo on two widely used datasets, HumanML3D241

[3] and KIT-ML [36], focusing on two key aspects: alignment and generation quality. Alignment is242

assessed using R-Precision and MM Dist, while generation quality is measured by Diversity and FID.243

Implementation Details. Due to limited preference-labeled motion data, we use existing datasets244

(e.g., HumanML3D, KIT-ML) as offline preferred motions. For online generation of unpreferred245

motions, we use TMR, a text-to-motion retrieval model [37], as the reward model. Hyperparameters246

K and τ are tuned through preliminary experiments to balance performance and efficiency, with247

τ = 0.45, C = 2, and β = 1 in Eq. (14). We set K = 4 for MDM [38] and K = 2 for MLD [1]. All248

models are trained in 100 minutes on a single NVIDIA GeForce RTX 4090D GPU. Since MLD∗ [2]249

is tailored for HumanML3D, we use MLD [1] for KIT-ML. Further details are in App. C.2.250

7



Table 1: Quantitative results of preference alignment methods for text-to-motion generation on
the HumanML3D test set. Results are borrowed from those reported in [9]. The subscripts in each
cell denotes the relative performance change. Superscript “†" marks the largest improvement across
all models; gray background highlights the largest improvement for each model. “Time∗” denotes
estimated online/offline motion generation time, with “1X” as the time for MLD [1] to generate all
HumanML3D motions and “K” (unspecified in [9], typically 2∼6) as the number of motion pairs.

Methods Time∗ R-Precision ↑ MM Dist ↓ Diversity → FID ↓
Top 1 Top 2 Top 3

Real - .511±.003 .703±.003 .797±.002 2.974±.008 9.503±.065 .002 ±.000

MLD [1] +0 X - - .755±.003 3.292±.010 9.793±.072 .459±.011

+ MoDiPO-T [9] +121K X - - .758±.002
+0.40% 3.267±.010

+0.76% 9.747±.073
+0.046 .303±.031

+33.9%

+ MoDiPO-G [9] +121K X - - .753±.003
−0.26% 3.294±.010

−0.01% 9.702±.075
+0.091 .281±.031

+38.8%

+ MoDiPO-O [9] - - - .677±.003
−10.3% 3.701±.013

−12.4% 9.241±.079
−0.018 .276±.007

+39.9%
†

+ SoPo (Ours) +20 X - - .763±.003
+1.06% 3.185±.012

+3.25%
† 9.525±.065

+0.268
† .374±.007

+18.5%

MDM [13] +0 X .418 ±.005 .604±.005 .703±.005 3.658±.025 9.546±.066 .501±.037

+ MoDiPO-T [9] +121K X - - .706±.004
+0.42% 3.634±.026

+0.66% 9.531±.073
+0.015 .451±.031

+9.98%

+ MoDiPO-G [9] +121K X - - .704±.001
+0.14% 3.641±.025

+0.46% 9.495±.071
+0.035 .486±.031

+2.99%

MDM (fast) [13] +0 X .455±.006 .645±.007 .749±.004 3.304±.023 9.948±.084 .534±.052

+ SoPo (Ours) +60 X .479±.006
+5.27%

† .674 ±.005
+4.50%

† .770±.006
+2.80%

† 3.208±.025
+2.91% 9.906±.083

+0.042 .480±.046
+10.1%

5.1 Main Results251

Settings. We evaluate SoPo for preference alignment and motion generation, comparing it with252

state-of-the-art preference alignment [9] and text-to-motion methods [1, 7]. For fairness, we fine-tune253

MLD [1] and MDM [13] with SoPo, using a fast diffusion variant [13] with 50 sampling steps. We254

also fine-tune MLD∗ [2] as a stronger baseline. Since MLD∗ is not adapted to KIT-ML, we use255

MLD [1] and MoMask [39] for diffusion-based and autoregressive methods, respectively.256

Comparison with Preference Alignment Methods. Table 1 compares preference alignment methods.257

MoDiPO, a DPO-based method for motion generation, faces overfitting and biased sampling issues258

[17]. Conversely, our SoPo method uses diverse high-probability unpreferred and high-quality259

preferred motions, improving generation quality and reducing unpreferred motions. SoPo excels in260

most metrics except FID, with R-Precision gains of 5.27%, 4.50%, and 2.80% (vs. baseline 0.42%)261

and a 3.25% MM Dist. improvement (vs. MoDiPO’s −12.4% to +0.76%). SoPo boosts Diversity262

by 0.268 (vs. MoDiPO’s −0.018 to 0.091). Despite MoDiPO’s slight FID edge, SoPo’s results are263

comparable, owing to conservative training on low-probability, high-preference samples. SoPo also264

eliminates pairwise labels and cuts preference data generation time to ∼1/10 of that MoDiPO.265

Table 2: Comparison of text-to-motion generation
performance on the KIT-ML dataset.
Method R Precision ↑ FID ↓ MM Dist ↓ Diversity →

Top 1 Top 2 Top 3

Real 0.424 0.649 0.779 0.031 2.788 11.08

TEMOS [38] 0.370 0.569 0.693 2.770 3.401 10.91
T2M [3] 0.361 0.559 0.681 3.022 2.052 10.72
MLD [1] 0.390 0.609 0.734 0.404 3.204 10.80
T2M-GPT [40] 0.416 0.627 0.745 0.514 3.007 10.86
MotionGPT [41] 0.366 0.558 0.680 0.510 3.527 10.35
MotionDiffuse[14] 0.417 0.621 0.739 1.954 2.958 11.10
Mo.Mamba [7] 0.419 0.645 0.765 0.307 3.021 11.02
MoMask [39] 0.433 0.656 0.781 0.204 2.779 10.71

MLD [1]+ SoPo 0.412 0.646 0.759 0.384 3.107 10.93
MoMask [39]+ SoPo 0.446 0.673 0.797 0.176 2.783 10.96

Comparison with Motion Generation266

Methods. We evaluate SoPo on Hu-267

manML3D [3], with results in Table 3. Us-268

ing preference alignment, SoPo surpasses269

state-of-the-art methods in R-Precision,270

MM Dist, and FID, achieving the best per-271

formance. Although MotionGPT [41] has272

slightly higher Diversity (9.584 vs. 9.528),273

SoPo improves R-Precision by 6.46%, FID274

by 33.5%, and MM Dist by 5.34%. Com-275

pared to Motion Mamba and CrossDiff,276

SoPo increases Diversity by 0.287 and re-277

duces MM Dist by 12.5%. It also enhances278

MLD∗’s FID by 61.3%. On KIT-ML (Ta-279

ble 2), SoPo with MoMask [39] achieves280

the best results across all metrics: Top-k R-Precision (0.446, 0.673, 0.797), MM Dist (2.783), and281

FID (0.176). MLD with SoPo consistently outperforms its original version, confirming SoPo’s282

effectiveness across various model architectures.283

5.2 Ablation Studies284

Impact of Sample Size K. Due to computational and memory constraints, we recommend keeping285

K < 8. As shown in Table 4, increasing K significantly improves generation quality. A larger286

sample pool allows the reward model to better evaluate and filter unpreferred motions, leading to287

more accurate guidance and higher-quality results.288
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Table 3: Quantitative comparison of state-of-the-art text-to-motion generation on the Hu-
manML3D test set. ‘MLD∗” refers to the enhanced reproduction of MLD [1] from [2]. For a fair
comparison, we selected the “LMM-T” [42] with a similar size to ours.

Methods Year R-Precision ↑ MM Dist ↓ Diversity → FID ↓
Top 1 Top 2 Top 3 Avg.

Real - 0.511±0.003 0.703±0.003 0.797±0.002 0.670 2.794±0.008 9.503±0.065 0.002±0.000

TEMOS [38] 2022 0.424±0.002 0.612±0.002 0.722±0.002 0.586 3.703±0.008 8.973±0.071 3.734±0.028

T2M [3] 2022 0.457±0.002 0.639±0.003 0.740±0.003 0.612 3.340±0.008 9.188±0.002 1.067±0.002

MDM [13] 2022 0.418 ±0.005 0.604±0.005 0.703±0.005 0.575 3.658±0.025 9.546±0.066 0.501±0.037

MLD [1] 2023 0.481±0.003 0.673±0.003 0.772±0.002 0.642 3.196±0.016 9.724±0.082 0.473±0.013

Fg-T2M [5] 2023 0.418±0.005 0.626±0.004 0.745±0.004 0.596 3.114±0.015 10.930±0.083 0.571±0.047

M2DM [8] 2023 0.416±0.004 0.628±0.004 0.743±0.004 0.596 3.015±0.017 11.417±0.082 0.515±0.029

MotionGPT [41] 2023 0.492±0.003 0.681±0.003 0.778±0.002 0.650 3.096±0.008 9.528±0.071 0.232±0.008

MotionDiffuse [14] 2024 0.491±0.004 0.681±0.002 0.782±0.001 0.651 3.113±0.018 9.410±0.049 0.630±0.011

OMG [43] 2024 - - 0.784±0.002 - - 9.657±0.085 0.381±0.008

Wang et. al. [6] 2024 0.433±0.007 0.629±0.007 0.733±0.006 0.598 3.430±0.061 9.825±0.159 0.352±0.109

MoDiPO-T [9] 2024 - - 0.758±0.002 - 3.267±0.010 9.747±0.073 0.303±0.031

PriorMDM [12] 2024 0.481 - - - 5.610 9.620 0.600
LMM-T1 [42] 2024 0.496 ±0.002 0.685 ±0.002 0.785±0.002 0.655 3.087±0.012 9.176±0.074 0.415±0.002

CrossDiff3 [11] 2024 - - 0.730 - 3.358 9.577 0.281
Motion Mamba [7] 2024 0.502±0.003 0.693±0.002 0.792±0.002 0.662 3.060±0.009 9.871±0.084 0.281±0.011

MLD∗ [1, 2] 2023 0.504±0.002 0.698±0.003 0.796±0.002 0.666 3.052±0.009 9.634±0.064 0.450±0.011

MLD∗ [2] + SoPo - 0.528 +4.76% 0.722+3.44% 0.827 +3.89% 0.692 +3.90% 2.939 +3.70% 9.584+38.1% 0.174 +61.3%

Table 4: Ablation study on alignment methods, thresholds
τ , and sampled number K.
Methods R-Precision ↑ MM Dist ↓ Diversity → FID ↓

Top 1 Top 2 Top 3

MDM (fast) [13] .455 .645 .749 3.304 9.948 .534

+DSoPo .460+1.08% .655+1.55% .756+0.93% 3.297+0.02% 9.925+0.033 .495+7.30%

+SoPo w/o VU .460+1.08% .656+1.71% .756+0.93% 3.295+0.02% 9.915+0.033 .486+8.98%

+USoPo .473+3.96% .668+3.57% .767+2.40% 3.226+2.36% 9.901+0.047 .556−4.12%

+SoPo .479+5.27% .674+4.50% .770+2.80% 3.208+2.91% 9.906+0.042 .480+10.1%

+SoPo (τ = 0.40) .475+4.40% .661+2.48% .768+2.53% 3.272+0.97% 10.04−0.088 .600−12.4%

+SoPo (τ = 0.45) .479+5.27% .674+4.50% .770+2.80% 3.208+2.91% 9.906+0.042 .480+10.1%

+SoPo (τ = 0.50) .468+2.86% .663+2.79% .764+2.01% 3.256+1.45% 9.900+0.048 .491+8.05%

+SoPo (τ = 0.55) .466+2.41% .660+1.86% .763+1.87% 3.263+1.24% 9.896+0.041 .430+19.5%

+SoPo (τ = 0.60) .461+1.31% .656+1.71% .758+1.20% 3.288+0.48% 9.803+0.145 .399+25.3%

+SoPo (K = 2) .480+5.50% .671+4.03% .771+2.94% 3.212+2.78% 9.907+0.041 .502+5.99%

+SoPo (K = 4) .479+5.27% .674+4.50% .770+2.80% 3.208+2.91% 9.906+0.042 .480+10.1%

Impact of Objective Functions. We289

fine-tune MDM [13] using four ob-290

jectives: DSoPo (Eq. (12)), USoPo291

(Eq. (13)), SoPo without value-292

unpreferred (VU), and full SoPo293

(Eq. (14)). As shown in Table 4,294

DSoPo alleviates limitations of of-295

fline/online DPO (Sec. 4.1) and im-296

proves FID by 7.30%. Removing VU297

further boosts FID to 8.98% by em-298

phasizing preferred motions that differ299

from unpreferred ones. USoPo, using300

a threshold τ to filter unpreferred mo-301

tions, enhances R-Precision (+3.96%),302

MM Dist (+2.36%), and Diversity (+0.047), though FID slightly drops (–4.12%). Combining all303

advantages, SoPo achieves the best results: +5.27% R-Precision and +10.1% FID.304

Impact of Cut-Off Thresholds τ . Table 4 reports results with τ ranging from 0.40 to 0.60. A lower305

τ leads to stricter filtering, yielding more reliable unpreferred motions. As τ decreases, R-Precision306

and MM Dist improve, indicating better alignment. In contrast, higher τ values improve FID and307

Diversity, suggesting enhanced generative quality due to exposure to more diverse samples.308

Visualization. We visualize results of our SoPo and existing methods, provided in App. C.3.309

6 Conclusion310

In this study, we introduce a semi-online preference optimization method: a DPO-based fine-tune311

method for the text-to-motion model to directly align preference on “Semi-online data" consisting of312

high-quality preferred and diverse unpreferred motions. Our SoPo leverages the advantages both of313

online DPO and offline DPO, to overcome their own limitations. Furthermore, to ensure the validity314

of SoPo, we present a simple yet effective online generation method along with an offline reweighing315

strategy. Extensive experimental results show the effectiveness of our SoPo.316

Limitation discussion. SoPo relies on a reward model to motion quality evaluation and identify317

usable unpreferred samples. However, research on reward models in the motion domain remains318

scarce, and current models, trained on specific datasets, exhibit limited generalization. Consequently,319

SoPo inherits these limitations, facing challenges in seamlessly fine-tuning diffusion models with320

reward models across diverse, open-domain scenarios.321
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NeurIPS Paper Checklist463

1. Claims464

Question: Do the main claims made in the abstract and introduction accurately reflect the465

paper’s contributions and scope?466

Answer: [Yes]467

Justification: The main claims in the abstract accurately reflect our contributions.468

Guidelines:469

• The answer NA means that the abstract and introduction do not include the claims470

made in the paper.471

• The abstract and/or introduction should clearly state the claims made, including the472

contributions made in the paper and important assumptions and limitations. A No or473

NA answer to this question will not be perceived well by the reviewers.474

• The claims made should match theoretical and experimental results, and reflect how475

much the results can be expected to generalize to other settings.476

• It is fine to include aspirational goals as motivation as long as it is clear that these goals477

are not attained by the paper.478

2. Limitations479

Question: Does the paper discuss the limitations of the work performed by the authors?480

Answer: [Yes]481

Justification: We discuss the limitations of this work in Sec. 6.482

Guidelines:483

• The answer NA means that the paper has no limitation while the answer No means that484

the paper has limitations, but those are not discussed in the paper.485

• The authors are encouraged to create a separate "Limitations" section in their paper.486

• The paper should point out any strong assumptions and how robust the results are to487

violations of these assumptions (e.g., independence assumptions, noiseless settings,488

model well-specification, asymptotic approximations only holding locally). The authors489

should reflect on how these assumptions might be violated in practice and what the490

implications would be.491

• The authors should reflect on the scope of the claims made, e.g., if the approach was492

only tested on a few datasets or with a few runs. In general, empirical results often493

depend on implicit assumptions, which should be articulated.494

• The authors should reflect on the factors that influence the performance of the approach.495

For example, a facial recognition algorithm may perform poorly when image resolution496

is low or images are taken in low lighting. Or a speech-to-text system might not be497

used reliably to provide closed captions for online lectures because it fails to handle498

technical jargon.499

• The authors should discuss the computational efficiency of the proposed algorithms500

and how they scale with dataset size.501

• If applicable, the authors should discuss possible limitations of their approach to502

address problems of privacy and fairness.503

• While the authors might fear that complete honesty about limitations might be used by504

reviewers as grounds for rejection, a worse outcome might be that reviewers discover505

limitations that aren’t acknowledged in the paper. The authors should use their best506

judgment and recognize that individual actions in favor of transparency play an impor-507

tant role in developing norms that preserve the integrity of the community. Reviewers508

will be specifically instructed to not penalize honesty concerning limitations.509

3. Theory assumptions and proofs510

Question: For each theoretical result, does the paper provide the full set of assumptions and511

a complete (and correct) proof?512

Answer: [Yes]513
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Justification: The proof are provided in App. B.514

Guidelines:515

• The answer NA means that the paper does not include theoretical results.516

• All the theorems, formulas, and proofs in the paper should be numbered and cross-517

referenced.518

• All assumptions should be clearly stated or referenced in the statement of any theorems.519

• The proofs can either appear in the main paper or the supplemental material, but if520

they appear in the supplemental material, the authors are encouraged to provide a short521

proof sketch to provide intuition.522

• Inversely, any informal proof provided in the core of the paper should be complemented523

by formal proofs provided in appendix or supplemental material.524

• Theorems and Lemmas that the proof relies upon should be properly referenced.525

4. Experimental result reproducibility526

Question: Does the paper fully disclose all the information needed to reproduce the main ex-527

perimental results of the paper to the extent that it affects the main claims and/or conclusions528

of the paper (regardless of whether the code and data are provided or not)?529

Answer: [Yes]530

Justification: We provide complete experimental details in Sec. ??.531

Guidelines:532

• The answer NA means that the paper does not include experiments.533

• If the paper includes experiments, a No answer to this question will not be perceived534

well by the reviewers: Making the paper reproducible is important, regardless of535

whether the code and data are provided or not.536

• If the contribution is a dataset and/or model, the authors should describe the steps taken537

to make their results reproducible or verifiable.538

• Depending on the contribution, reproducibility can be accomplished in various ways.539

For example, if the contribution is a novel architecture, describing the architecture fully540

might suffice, or if the contribution is a specific model and empirical evaluation, it may541

be necessary to either make it possible for others to replicate the model with the same542

dataset, or provide access to the model. In general. releasing code and data is often543

one good way to accomplish this, but reproducibility can also be provided via detailed544

instructions for how to replicate the results, access to a hosted model (e.g., in the case545

of a large language model), releasing of a model checkpoint, or other means that are546

appropriate to the research performed.547

• While NeurIPS does not require releasing code, the conference does require all submis-548

sions to provide some reasonable avenue for reproducibility, which may depend on the549

nature of the contribution. For example550

(a) If the contribution is primarily a new algorithm, the paper should make it clear how551

to reproduce that algorithm.552

(b) If the contribution is primarily a new model architecture, the paper should describe553

the architecture clearly and fully.554

(c) If the contribution is a new model (e.g., a large language model), then there should555

either be a way to access this model for reproducing the results or a way to reproduce556

the model (e.g., with an open-source dataset or instructions for how to construct557

the dataset).558

(d) We recognize that reproducibility may be tricky in some cases, in which case559

authors are welcome to describe the particular way they provide for reproducibility.560

In the case of closed-source models, it may be that access to the model is limited in561

some way (e.g., to registered users), but it should be possible for other researchers562

to have some path to reproducing or verifying the results.563

5. Open access to data and code564

Question: Does the paper provide open access to the data and code, with sufficient instruc-565

tions to faithfully reproduce the main experimental results, as described in supplemental566

material?567
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Answer: [NA]568

Justification: We plan to release the code and detailed documentation after the acceptance of569

the paper.570

Guidelines:571

• The answer NA means that paper does not include experiments requiring code.572

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/573

public/guides/CodeSubmissionPolicy) for more details.574

• While we encourage the release of code and data, we understand that this might not be575

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not576

including code, unless this is central to the contribution (e.g., for a new open-source577

benchmark).578

• The instructions should contain the exact command and environment needed to run to579

reproduce the results. See the NeurIPS code and data submission guidelines (https:580

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.581

• The authors should provide instructions on data access and preparation, including how582

to access the raw data, preprocessed data, intermediate data, and generated data, etc.583

• The authors should provide scripts to reproduce all experimental results for the new584

proposed method and baselines. If only a subset of experiments are reproducible, they585

should state which ones are omitted from the script and why.586

• At submission time, to preserve anonymity, the authors should release anonymized587

versions (if applicable).588

• Providing as much information as possible in supplemental material (appended to the589

paper) is recommended, but including URLs to data and code is permitted.590

6. Experimental setting/details591

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-592

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the593

results?594

Answer: [Yes]595

Justification: We describe the complete experimental details and hyperparameter choices in596

Sec 5.597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The experimental setting should be presented in the core of the paper to a level of detail600

that is necessary to appreciate the results and make sense of them.601

• The full details can be provided either with the code, in appendix, or as supplemental602

material.603

7. Experiment statistical significance604

Question: Does the paper report error bars suitably and correctly defined or other appropriate605

information about the statistical significance of the experiments?606

Answer: [Yes]607

Justification: The confidence intervals based on 20 independent repetitions are reported in608

Table 1.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• The authors should answer "Yes" if the results are accompanied by error bars, confi-612

dence intervals, or statistical significance tests, at least for the experiments that support613

the main claims of the paper.614

• The factors of variability that the error bars are capturing should be clearly stated (for615

example, train/test split, initialization, random drawing of some parameter, or overall616

run with given experimental conditions).617

• The method for calculating the error bars should be explained (closed form formula,618

call to a library function, bootstrap, etc.)619
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• The assumptions made should be given (e.g., Normally distributed errors).620

• It should be clear whether the error bar is the standard deviation or the standard error621

of the mean.622

• It is OK to report 1-sigma error bars, but one should state it. The authors should623

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis624

of Normality of errors is not verified.625

• For asymmetric distributions, the authors should be careful not to show in tables or626

figures symmetric error bars that would yield results that are out of range (e.g. negative627

error rates).628

• If error bars are reported in tables or plots, The authors should explain in the text how629

they were calculated and reference the corresponding figures or tables in the text.630

8. Experiments compute resources631

Question: For each experiment, does the paper provide sufficient information on the com-632

puter resources (type of compute workers, memory, time of execution) needed to reproduce633

the experiments?634

Answer: [Yes]635

Justification: We report the computational resource requirements of our proposed method in636

Sec 5.637

Guidelines:638

• The answer NA means that the paper does not include experiments.639

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,640

or cloud provider, including relevant memory and storage.641

• The paper should provide the amount of compute required for each of the individual642

experimental runs as well as estimate the total compute.643

• The paper should disclose whether the full research project required more compute644

than the experiments reported in the paper (e.g., preliminary or failed experiments that645

didn’t make it into the paper).646

9. Code of ethics647

Question: Does the research conducted in the paper conform, in every respect, with the648

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?649

Answer: [Yes]650

Justification: Our research aligns with the NeurIPS Code of Ethics.651

Guidelines:652

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.653

• If the authors answer No, they should explain the special circumstances that require a654

deviation from the Code of Ethics.655

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-656

eration due to laws or regulations in their jurisdiction).657

10. Broader impacts658

Question: Does the paper discuss both potential positive societal impacts and negative659

societal impacts of the work performed?660

Answer: [NA]661

Justification: Our paper focuses on preference alignment for motion generation without662

addressing broader societal implications.663

Guidelines:664

• The answer NA means that there is no societal impact of the work performed.665

• If the authors answer NA or No, they should explain why their work has no societal666

impact or why the paper does not address societal impact.667

• Examples of negative societal impacts include potential malicious or unintended uses668

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations669

(e.g., deployment of technologies that could make decisions that unfairly impact specific670

groups), privacy considerations, and security considerations.671
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• The conference expects that many papers will be foundational research and not tied672

to particular applications, let alone deployments. However, if there is a direct path to673

any negative applications, the authors should point it out. For example, it is legitimate674

to point out that an improvement in the quality of generative models could be used to675

generate deepfakes for disinformation. On the other hand, it is not needed to point out676

that a generic algorithm for optimizing neural networks could enable people to train677

models that generate Deepfakes faster.678

• The authors should consider possible harms that could arise when the technology is679

being used as intended and functioning correctly, harms that could arise when the680

technology is being used as intended but gives incorrect results, and harms following681

from (intentional or unintentional) misuse of the technology.682

• If there are negative societal impacts, the authors could also discuss possible mitigation683

strategies (e.g., gated release of models, providing defenses in addition to attacks,684

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from685

feedback over time, improving the efficiency and accessibility of ML).686

11. Safeguards687

Question: Does the paper describe safeguards that have been put in place for responsible688

release of data or models that have a high risk for misuse (e.g., pretrained language models,689

image generators, or scraped datasets)?690

Answer: [NA]691

Justification: The paper poses no such risks.692

Guidelines:693

• The answer NA means that the paper poses no such risks.694

• Released models that have a high risk for misuse or dual-use should be released with695

necessary safeguards to allow for controlled use of the model, for example by requiring696

that users adhere to usage guidelines or restrictions to access the model or implementing697

safety filters.698

• Datasets that have been scraped from the Internet could pose safety risks. The authors699

should describe how they avoided releasing unsafe images.700

• We recognize that providing effective safeguards is challenging, and many papers do701

not require this, but we encourage authors to take this into account and make a best702

faith effort.703

12. Licenses for existing assets704

Question: Are the creators or original owners of assets (e.g., code, data, models), used in705

the paper, properly credited and are the license and terms of use explicitly mentioned and706

properly respected?707

Answer: [Yes]708

Justification: We plan to release the code and datasets after the acceptance of the paper.709

Guidelines:710

• The answer NA means that the paper does not use existing assets.711

• The authors should cite the original paper that produced the code package or dataset.712

• The authors should state which version of the asset is used and, if possible, include a713

URL.714

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.715

• For scraped data from a particular source (e.g., website), the copyright and terms of716

service of that source should be provided.717

• If assets are released, the license, copyright information, and terms of use in the718

package should be provided. For popular datasets, paperswithcode.com/datasets719

has curated licenses for some datasets. Their licensing guide can help determine the720

license of a dataset.721

• For existing datasets that are re-packaged, both the original license and the license of722

the derived asset (if it has changed) should be provided.723
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• If this information is not available online, the authors are encouraged to reach out to724

the asset’s creators.725

13. New assets726

Question: Are new assets introduced in the paper well documented and is the documentation727

provided alongside the assets?728

Answer: [Yes]729

Justification: We plan to release the code and detailed documentation after the acceptance of730

the paper.731

Guidelines:732

• The answer NA means that the paper does not release new assets.733

• Researchers should communicate the details of the dataset/code/model as part of their734

submissions via structured templates. This includes details about training, license,735

limitations, etc.736

• The paper should discuss whether and how consent was obtained from people whose737

asset is used.738

• At submission time, remember to anonymize your assets (if applicable). You can either739

create an anonymized URL or include an anonymized zip file.740

14. Crowdsourcing and research with human subjects741

Question: For crowdsourcing experiments and research with human subjects, does the paper742

include the full text of instructions given to participants and screenshots, if applicable, as743

well as details about compensation (if any)?744

Answer: [NA]745

Justification: This work does not involve crowdsourcing nor research with human subjects.746

Guidelines:747

• The answer NA means that the paper does not involve crowdsourcing nor research with748

human subjects.749

• Including this information in the supplemental material is fine, but if the main contribu-750

tion of the paper involves human subjects, then as much detail as possible should be751

included in the main paper.752

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,753

or other labor should be paid at least the minimum wage in the country of the data754

collector.755

15. Institutional review board (IRB) approvals or equivalent for research with human756

subjects757

Question: Does the paper describe potential risks incurred by study participants, whether758

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)759

approvals (or an equivalent approval/review based on the requirements of your country or760

institution) were obtained?761

Answer: [NA]762

Justification: This work does not involve crowdsourcing nor research with human subjects.763

Guidelines:764

• The answer NA means that the paper does not involve crowdsourcing nor research with765

human subjects.766

• Depending on the country in which research is conducted, IRB approval (or equivalent)767

may be required for any human subjects research. If you obtained IRB approval, you768

should clearly state this in the paper.769

• We recognize that the procedures for this may vary significantly between institutions770

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the771

guidelines for their institution.772

• For initial submissions, do not include any information that would break anonymity (if773

applicable), such as the institution conducting the review.774
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16. Declaration of LLM usage775

Question: Does the paper describe the usage of LLMs if it is an important, original, or776

non-standard component of the core methods in this research? Note that if the LLM is used777

only for writing, editing, or formatting purposes and does not impact the core methodology,778

scientific rigorousness, or originality of the research, declaration is not required.779

Answer: [NA]780

Justification: This paper does not use LLMs.781

Guidelines:782

• The answer NA means that the core method development in this research does not783

involve LLMs as any important, original, or non-standard components.784

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)785

for what should or should not be described.786
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